Peran Penginderaan Jauh dan Sistem Informasi Geografis dalam Penerapan Pertanian Cerdas di Era Industri 4.0
Abstract
Kemajuan ilmu pengetahuan dan teknologi telah menghantar peradaban umat manusia untuk memasuki era industri 4.0. Penerapan tekhnologi pada bidang pertanian telah memungkinkan upaya peningkatan produktivitas pertanian secara signifikan guna penyediaan pangan bagi populasi penduduk global yang meningkat kian pesat. Keterbatasan faktor produksi pada sektor pertanian seperti keterbatasan lahan, keterbatasan sumber air, maupun perubahan iklim bukanlah penghalang guna mencapai ketahanan pangan. Penerapan teknologi pertanian cerdas berbasis GIS dan penginderaan jauh telah berperan dalam pemecahan masalah disektor pertanian. Artikel ini merupakan ulasan dari beberapa jurnal terdahulu yang memberikan gambaran tentang apasaja peran Sistem Informasi Geografis (SIG) dan aplikasi lain seperti pengeinderaan jauh (Inderaja), sistem pemosisian global (GPS), serta sistem komputasi analisis data lainnya. Penerapan penginderaan jauh dan SIG dalam kombinasinya dengan teknologi digital melalui aplikasi terbaru memungkinkan dapat merealisasi pertanian presisi serta upaya produksi pangan secara berkelanjutan. Dalam segala keterbatasannya, artikel ini diharapkan dapat memberi sedikit gambaran terkait penerapan pertanian presisi serta peluang penelitian lanjutan lainnya.
Kata kunci: Inderaja, SIG, Pertanian Cerdas
Full Text:
PDFReferences
Abdel Rahman, M. A. E., Metwaly, M. M., Afifi, A. A., D’Antonio, P., & Scopa, A. (2022). Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta. Land, 11(8), 1256. https://doi.org/10.3390/land11081256
Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., Abidin, M. S. Z., Ayobami, A. S., Yerima, O., & Nasirahmadi, A. (2022). Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering, 4(1), 70–103. https://doi.org/10.3390/agriengineering4010006
Abou-Shaara, H. F., Amiri, E., & Parys, K. A. (2022). Tracking the Effects of Climate Change on the Distribution of Plecia nearctica (Diptera, Bibionidae) in the USA Using MaxEnt and GIS. Diversity, 14(8), 690. https://doi.org/10.3390/d14080690
Alam, K. F., & Ahamed, T. (2022). Assessment of Land Use Land Cover Changes for Predicting Vulnerable Agricultural Lands in River Basins of Bangladesh Using Remote Sensing and a Fuzzy Expert System. Remote Sensing, 14(21), 5582. https://doi.org/10.3390/rs14215582
Amiri-Zarandi, M., Dara, R. A., Duncan, E., & Fraser, E. D. G. (2022). Big Data Privacy in Smart Farming: A Review. Sustainability, 14(15), 9120. https://doi.org/10.3390/su14159120
Ammoniaci, M., Kartsiotis, S.-P., Perria, R., & Storchi, P. (2021). State of the Art of Monitoring Technologies and Data Processing for Precision Viticulture. Agriculture, 11(3), 201. https://doi.org/10.3390/agriculture11030201
Arabameri, A., Tiefenbacher, J. P., Blaschke, T., Pradhan, B., & Tien Bui, D. (2020). Morphometric Analysis for Soil Erosion Susceptibility Mapping Using Novel GIS-Based Ensemble Model. Remote Sensing, 12(5), 874. https://doi.org/10.3390/rs12050874
Attia, A., Qureshi, A. S., Kane, A. M., Alikhanov, B., Kheir, A. M. S., Ullah, H., Datta, A., & Samasse, K. (2022). Selection of Potential Sites for Promoting Small-Scale Irrigation across Mali Using Remote Sensing and GIS. Sustainability, 14(19), 12040. https://doi.org/10.3390/su141912040
Benjamin, M., & Yik, S. (2019). Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals, 9(4), 133. https://doi.org/10.3390/ani9040133
Çelik, R. (2019). Evaluation of Groundwater Potential by GIS-Based Multicriteria Decision Making as a Spatial Prediction Tool: Case Study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water, 11(12), 2630. https://doi.org/10.3390/w11122630
Delgado, J. A., Short, N. M., Roberts, D. P., & Vandenberg, B. (2019). Big Data Analysis for Sustainable Agriculture on a Geospatial Cloud Framework. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00054
Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12(10), 1745. https://doi.org/10.3390/agriculture12101745
Elsharkawy, M. M., Sheta, A. E. A. S., D’Antonio, P., Abdelwahed, M. S., & Scopa, A. (2022). Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt. Sustainability, 14(9), 5437. https://doi.org/10.3390/su14095437
FAO UN. (2022). The future of food and agriculture – Drivers and triggers for transformation. FAO. https://doi.org/10.4060/cc0959en
Fuentes, S., & Chang, J. (2022). Methodologies Used in Remote Sensing Data Analysis and Remote Sensors for Precision Agriculture. Sensors, 22(20), 7898. https://doi.org/10.3390/s22207898
Gasmi, A., Gomez, C., Chehbouni, A., Dhiba, D., & El Gharous, M. (2022). Using PRISMA Hyperspectral Satellite Imagery and GIS Approaches for Soil Fertility Mapping (FertiMap) in Northern Morocco. Remote Sensing, 14(16), 4080. https://doi.org/10.3390/rs14164080
Gokool, S., Mahomed, M., Kunz, R., Clulow, A., Sibanda, M., Naiken, V., Chetty, K., & Mabhaudhi, T. (2023). Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis. Sustainability, 15(4), 3557. https://doi.org/10.3390/su15043557
Hassan, S. I., Alam, M. M., Zia, M. Y. I., Rashid, M., Illahi, U., & Su’ud, M. M. (2022). Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield. Sensors, 22(21), 8567. https://doi.org/10.3390/s22218567
Kanwal, S., Khan, M. A., Saleem, S., Tahir, M. N., Muntaha, S. T., Samreen, T., Javed, S., Nazir, M. Z., & Shahzad, B. (2022). Integration of Precision Agriculture Techniques for Pest Management. The 1st International Precision Agriculture Pakistan Conference 2022 (PAPC 2022)—Change the Culture of Agriculture, 19. https://doi.org/10.3390/environsciproc2022023019
Khanal, S., KC, K., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sensing, 12(22), 3783. https://doi.org/10.3390/rs12223783
Kumari, M. K. N., Sakai, K., Kimura, S., Yuge, K., & Gunarathna, M. H. J. P. (2019). Classification of Groundwater Suitability for Irrigation in the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process. Agronomy, 9(7), 351. https://doi.org/10.3390/agronomy9070351
Kuswidiyanto, L. W., Noh, H.-H., & Han, X. (2022). Plant Disease Diagnosis Using Deep Learning Based on Aerial Hyperspectral Images: A Review. Remote Sensing, 14(23), 6031. https://doi.org/10.3390/rs14236031
Mangan, P., Pandi, D., Haq, M. A., Sinha, A., Nagarajan, R., Dasani, T., Keshta, I., & Alshehri, M. (2022). Analytic Hierarchy Process Based Land Suitability for Organic Farming in the Arid Region. Sustainability, 14(8), 4542. https://doi.org/10.3390/su14084542
Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911
Mathenge, M., Sonneveld, B. G. J. S., & Broerse, J. E. W. (2022). Application of GIS in Agriculture in Promoting Evidence-Informed Decision Making for Improving Agriculture Sustainability: A Systematic Review. Sustainability, 14(16), 9974. https://doi.org/10.3390/su14169974
Min Htoo, T., Yabar, H., & Mizunoya, T. (2022). GIS-Based Cluster and Suitability Analysis of Crop Residues: A Case Study in Yangon Region, Myanmar. Applied Sciences, 12(22), 11822. https://doi.org/10.3390/app122211822
Morrone, S., Dimauro, C., Gambella, F., & Cappai, M. G. (2022). Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors, 22(12), 4319. https://doi.org/10.3390/s22124319
Mukhamedova, K. R., Cherepkova, N. P., Korotkov, A. V., Dagasheva, Z. B., & Tvaronavičienė, M. (2022). Digitalisation of Agricultural Production for Precision Farming: A Case Study. Sustainability, 14(22), 14802. https://doi.org/10.3390/su142214802
Pascucci, S., Pignatti, S., Casa, R., Darvishzadeh, R., & Huang, W. (2020). Special Issue “Hyperspectral Remote Sensing of Agriculture and Vegetation.” Remote Sensing, 12(21), 3665. https://doi.org/10.3390/rs12213665
Pásztor, L. (2021). Advanced GIS and RS Applications for Soil and Land Degradation Assessment and Mapping. ISPRS International Journal of Geo-Information, 10(3), 128. https://doi.org/10.3390/ijgi10030128
Prajapati, J. B., Barad, R., Patel, M. B., Saini, K., Prajapati, D., & Engineer, P. (2023). Smart Farming Ingredients (pp. 31–49). https://doi.org/10.4018/978-1-6684-6413-7.ch003
Quy, V. K., Hau, N. Van, Anh, D. Van, Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G., & Muzirafuti, A. (2022). IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Applied Sciences, 12(7), 3396. https://doi.org/10.3390/app12073396
Raj, E. F. I., Appadurai, M., & Athiappan, K. (2021). Precision Farming in Modern Agriculture (pp. 61–87). https://doi.org/10.1007/978-981-16-6124-2_4
Reynolds, C. A., Yitayew, M., Slack, D. C., Hutchinson, C. F., Huete, A., & Petersen, M. S. (2000). Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data. International Journal of Remote Sensing, 21(18), 3487–3508. https://doi.org/10.1080/014311600750037516
Rowe, Dawkins, & Gebhardt-Henrich. (2019). A Systematic Review of Precision Livestock Farming in the Poultry Sector: Is Technology Focussed on Improving Bird Welfare? Animals, 9(9), 614. https://doi.org/10.3390/ani9090614
Saiz-Rubio, V., & Rovira-Más, F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy, 10(2), 207. https://doi.org/10.3390/agronomy10020207
Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy, 10(5), 641. https://doi.org/10.3390/agronomy10050641
Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors, 19(17), 3796. https://doi.org/10.3390/s19173796
Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
Tzanidakis, C., Tzamaloukas, O., Simitzis, P., & Panagakis, P. (2023). Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture, 13(2), 288. https://doi.org/10.3390/agriculture13020288
Ünal, İ., Kabaş, Ö., & Sözer, S. (2020). Real-Time Electrical Resistivity Measurement and Mapping Platform of the Soils with an Autonomous Robot for Precision Farming Applications. Sensors, 20(1), 251. https://doi.org/10.3390/s20010251
Vizzari, M., Santaga, F., & Benincasa, P. (2019). Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy, 9(6), 278. https://doi.org/10.3390/agronomy9060278
Vrchota, J., Pech, M., & Švepešová, I. (2022). Precision Agriculture Technologies for Crop and Livestock Production in the Czech Republic. Agriculture, 12(8), 1080. https://doi.org/10.3390/agriculture12081080
Wanniarachchi, S., & Sarukkalige, R. (2022). A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology, 9(7), 123. https://doi.org/10.3390/hydrology9070123
Watuwaya, B. K., Syamsu, J. A., Budiman, & Useng, D. (2023). The role of remote sensing and GIS to support grassland identification. case study: East Sumba Regency, East Nusa Tenggara Province, Indonesia. 110004. https://doi.org/10.1063/5.0144198
Watuwaya, Bogarth K. (2022). Analisis Spasial dan Kesesuaian Lahan Padang Rumput Alam bagi Introduksi Lamtoro Tarramba (Leucaena leucocephala cv tarramba) di Kabupaten Sumba Timur Provinsi Nusa Tenggara Timur [Hasanuddin]. http://repository.unhas.ac.id/id/eprint/18339/
Watuwaya, Bogarth K., Syamsu, J. A., Budiman, B., & Useng, D. (2022). Forage productivity in native grasslands of Haharu Sub-district, East Sumba District, Indonesia. Biodiversitas Journal of Biological Diversity, 23(3). https://doi.org/10.13057/biodiv/d230321
Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
Yazdinejad, A., Zolfaghari, B., Azmoodeh, A., Dehghantanha, A., Karimipour, H., Fraser, E., Green, A. G., Russell, C., & Duncan, E. (2021). A Review on Security of Smart Farming and Precision Agriculture: Security Aspects, Attacks, Threats and Countermeasures. Applied Sciences, 11(16), 7518. https://doi.org/10.3390/app11167518
Zabihi, H., Alizadeh, M., Kibet Langat, P., Karami, M., Shahabi, H., Ahmad, A., Nor Said, M., & Lee, S. (2019). GIS Multi-Criteria Analysis by Ordered Weighted Averaging (OWA): Toward an Integrated Citrus Management Strategy. Sustainability, 11(4), 1009. https://doi.org/10.3390/su11041009
Zakarya, Y. M., Metwaly, M. M., AbdelRahman, M. A. E., Metwalli, M. R., & Koubouris, G. (2021). Optimized Land Use through Integrated Land Suitability and GIS Approach in West El-Minia Governorate, Upper Egypt. Sustainability, 13(21), 12236. https://doi.org/10.3390/su132112236
Refbacks
- There are currently no refbacks.