slot gacor
RETENSI AIR DAN DERAJAT KEJENUHAN TANAH GAMBUT DARI KAWASAN DAS SABANGAU | Sajarwan | Jurnal Ilmu-Ilmu Pertanian

RETENSI AIR DAN DERAJAT KEJENUHAN TANAH GAMBUT DARI KAWASAN DAS SABANGAU

Akhmat Sajarwan

Abstract


Air berperan penting dalam proses pembentukan, pengolahan, manajemen pemanfaatan, dan pelestarian tanah gambut. Tujuan penelitian ini adalah untuk mendapatkan karakteristik retensi air dan derajat kejenuhan tanah gambut. Penelitian dilaksanakan di Laboratorium Alam Hutan Gambut, Kalimantan Tengah, tahun 2007 sampai dengan tahun 2014. Contoh gambut diambil dari tiga kategori ketebalan gambut, yaitu Gambut Dangkal (SP), Gambut Sedang (MP) dan Gambut Dalam (DP), dari lapisan permukaan (0-50 cm atau L-1) dan lapisan sub permukaan (50-100 cm atau L-2). Kadar lengas volumetrik (θw) L-1 selalu lebih rendah dari L-2, kecuali untuk DP, dimana kadar lengas pada aras pF1; pF2 dan pF 2,54 pada L-1 lebih tinggi dari L-2. Kadar lengas DP, L-1 masing-masing senilai 29,36%, 17,59% dan 13,37% untuk aras pF 1, pF 2, dan pF 2,54, lebih rendah dari L-2, senilai 36,77%, 18,90 % dan 14,51 % pada nilai aras pF yang sama. Nilai rata-rata total pori pada L-1 kategori SP, MP dan DP berturut-turut adalah 84,67%, 86,40% dan 86,98%. Pada L-2, nilai rata-rata total pori kategori SP, MP dan DP berturut-turut adalah 83,53%, 84,56%, dan 86,93%. Nilai derajat kejenuhan (S) semua aras pF pada L-1 kategori MP cenderung lebih tinggi dari SP dan DP, kecuali pF 4,20; dimana nilai S untuk SP (22,35%) lebih tinggi dari MP (10,63%,) dan DP (7,53%). Selanjutnya, untuk L-2, nilai S untuk SP cenderung lebih tinggi dari MP dan DP, kecuali pF 0, dimana MP mempunyai nilai S yang lebih tinggi dari SP dan DP.


Kata Kunci : Kadar Lengas, Total Pori, Derajat Kejenuhan.


Full Text:

PDF

References


Anderson J.A.R. (1983). The tropical peat swamps of Malesia. In: Gore AJV (ed) Ecosystems of the world: mires: swamp, bog, fen and moor. Vol. 4B. Regional studies. Elsevier, New York. pp. 181— 199.

Blake G.R. dan Hartge K.H. (1986). Bulk density. In A. Klute (ed.) Methods of soil analysis. Part 1. Physical and mineralogical methods. American Society of Agronomy/Soil Science Society of America, Madison, Wisconsin, USA. pp. 363-375.

Boelter D.H. (1965). Hydraulic conductivity of peats. Soil Sci. 100. pp 606—609.

Campos J.R.R., Silva A.C., Fernandes J.S.C., Ferreira M.M. dan Silva D.V. (2011). Water retention in a peatland with organic matter in different decomposition stages. R. Bras. Ci. Solo, 35. pp 1217-1227.

Heiskanen J. (1992). Comparison of three methods for determining the particle density of soil with liquid pycnometers. Commun. Soil Sci. Plant Anal. 23. pp 841—846.

Hillel D. (1982). Introduction to soil physics, 392 pages, ISBN:0123485207. Academic Press, New York.

Indahyani S., Sumawinata B. dan Darmawan. (2017). Pengukuran retensi air tanah gambut menggunakan kombinasi three phase meter dan ceramic plate. Buletin Tanah dan Lahan, 1 (1) Januari 2017: pp 109-114.

Johari N.N., Bakar I, Razali S.N.M. dan Wahab N. (2016). Fiber Effects on Compressibility of Peat. IOP Conf. Ser.: Mater. Sci. Eng. 136. 012036.

Kanzari S, Hachicha M.M. dan Bouhlila R. (2012). Laboratory Method for Estimating Water Retention Properties of Unsaturated Soil. Walailak J. Sci & Tech 2012; 9(4): pp 361-367.

Kennedy G.W., Price J.S. (2005). A conceptual model of volume-change controls on the hydrology of cutover peats. J. Hydrol. 302. pp 13—27.

Kutilek M. dan Novak V. (1998). Exchange of water in the soil-plant-atmosphere system. Int. Agrophysics, 12. pp 28-33.

Madi R., de Rooij G.H., Mielenz H. dan Mai J. (2018). Parametric soil water retention models: a critical evaluation of expressions for the full moisture range. Hydrol. Earth Syst. Sci., 22, 1193—1219.

Muhammad N.Z. and Rieley J.O. (2002). Management of tropical peatlands in Indonesia: mega reclamation project in Central Kalimantan, in: J.O. Rieley and S.E. Page (Eds.) with B. Setiadi: Peatlands for People: Natural Resource Functions and Sustainable Management, Proc. of the Inter. Symposium on Tropical Peatland, 22—23 August 2001, Jakarta, Indonesia, BPPT and Indonesian Peat Association, pp. 155—167.

Ninmo J.R. (2004). Porosity and pores size distribution. in: Hillel, D., ed. Encyclo-pedia of Soils in the Environment: London, Elsevier, v. 3, p. 295-303.

Okruszko J. (1993). Transformation of fen-peat under the impact of drainage. Zesz. Probl. Post. Nauk Roln., 406. pp 3-74.

Page S.E., Rieley J.O. dan Wiist R. (2006). Lowland tropical peatland of Southeast Asia. In: Martini,P., Martinez—Cortizas, A., Cheswort, W. (ed) Peatlands: Evo-lution and record of environmental and climate changes. Dev. in earth surface processes series. Elsevier. pp 145 — 172.

Radjagukguk B. (1995). Peat soil of Indonesia: location, classification, and problems for sustainability. In: Biodiversity and Sustainability of Tropical Peatlands. Proc. of the Int. Symp. on Biodiversity, Environmental Importance of Trop. Peat and Peatlands. (eds) Rieley, J.O., and Page, S.E.; Samara Publ. UK. pp 45-54.

Rezanezhad F., Price J.S, and Craig J.R. (2012). The effects of dual porosity on transport and retardation in peat: a laboratory experiment. Can. J. Soil Sci. 92. pp 723—732.

Rezanezhad F., Price J.S., Quinton W.L., Lennartz B., Milojevic T. dan van Cappellen P. (2016). Structure of peat soil and implication for water storage, flow and solute transport: A review update for geochemists. Chemical Geology: 429. pp 75 — 84. Elsevier Publisher.

Rezanezhad F., Quinton W.L., Price. J.S., Elrick D., Elliot T. dan Heck R. (2009). Examining the effect of pore size distribution and shape on flow through unsaturated peat using computed tomography. Hydrol. Earth Syst. Sci. 13. pp 1993—2002.

Rezanezhad F, Quinton W L, Price J S, Elrick D, Elliot T and Shook K R. (2010). Influence of pore size and geometry on peat unsaturated hydraulic conductivity computed from 3D computed tomography image analysis. Hydrol. Process. 24. pp 2983—2994.

Richards L.A. dan Fireman L.A. (1943). Pressure plate apparatus for measuring moisture sorption and transmission by soils. Soil Sci. 56. pp 395-404.

Richards L.A. (1947). Pressure membrane apparatus, construction and use, Agric. Eng. 28. pp 451-454.

Ritzema H.P., Mutalib Mat Hassan A. dan Moens R.P. (1998). “A New Approach to Water Management of Tropical Peatlands: A Case Study from Malaysia, Irrigation and Drainage Systems, 12 (2). pp 123—139.

Seki K. (2007). SWRC fit — a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrol. Earth Syst. Sci. Discuss.4:407—437. www.hydrol-earth-syst-sci-discuss.net

van Genuchten M.T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44. pp.892—898.

Walczak R., Rovdan E. dan Witkowska-Walczak B. (2002). Water retention characteristics of peat and sand mixtures. Int. Agrophysics, 16. pp 161-165.

Walker R.H, Firkine B.J. dan Brown P.E. (1931). The Measurement of the Degree of Saturation of Soils with Bases. Research Bulletin. No 139. Agronomy section soils. Agri. Experiment Station. IOWA State College of Agriculture and Mechanic Arts.

Weindorf D.C. dan Wittie R. (2003). Determining particle density in dairy manure compost. The Texas Journal of Agricultural and Natural Resource. 16. pp. 60-63.

Weiss R., Alm J., Laiho R. dan Laine J. (1998). Modeling Moisture Retention in Peat Soils. Soil Science Society of America Journal. 62. pp 305-313

Widjaya-Adhi I.P.G. (1992). Development of deep tropical peatland for parrenial crops. Proc. Int. Symp. on Trop. Peatland. Kuching Malaysia. 380-384.

Wösten J.H.M. dan Ritzema H.P. (2001). “Land and Water Management Options for Peatland Development in Sarawak, Malaysia,” International Peat Journal. 11. Pp 59-66.




DOI: https://doi.org/10.55259/jiip.v27i2.551

Web Analytics Made Easy - Statcounter View My Stats